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Part I: Theory

1. Introduction

The method of least squares collocation was introduced into physical
geodesy in two principal preseatations by T. Krarup (1969) and H. Moritz (1972).
Meaawhile, the method -- in this context denoted as '"Method One" -- is well es-
tablished for different types of approximation and adjustment problems. Three
features for application in physical geodesy are pointed out:

--- We assume a certain number of measurements of a function
related to the anomalous potential of the earth's gravity field
is given, such as gravity anomalies, surface densities, de-
flections of the vertical and so on. Then the use of a harmonic
and regular covariance expression in collocation will lead to a
global approximation to this function with minimum norm. The
norm is defined by the covariance function,

--- The subsequent application of "'the law of propagation of covar-
iances' provides a global approximation to any desired function
related to the earth's anomalous potential. In addition, due to
the same fact, least squares collocation allows the combination
of all types of measurements related to the anomalous potential,

--- A basic quality of exact collocation is the reproduction of the
given data by the approximating function. This property is ful-
filled in least squares collocation too, where the signal part of
the measurements is reproduced by the approximating function.

Unfortunately, there are some numerical problems in contrast to the theo-
retical elegance of this method, Especially the necessary solution of a large
linear system with a dimension equal to the number of observations can cause
severe difficulties,

A similar least squares estimation method, in this context denoted as
""Method Two", is described in (P. Whittle, 1963). A treatment of the method in
geodesy, for example, is given by S. Lauer (1971), and by B. D. Tapley and B.
E. Schutz (1973). Also Method Two is called least squares collocation in the




geodetic literature, compare (H, Moritz, 1973, p. 84), (H. Moritz and K. P.
Schwarz, 1973), and (K. P. Schwarz, 1974).

A gemneralisation in combining both types of least squares methods is
derived by H. Wolf (1974).

K. P. Schwarz (1974) proved tjat for Method Two the solution of a linear
system with a dimension equal to the number of observations can be replaced by
& solution of a system with a dimension equal to the number of unknowns, This
property is of great advantage for all overdetermined problems.

The purpose of the present paper is a comparison of the models under-
lying these two least squares estimation methods and an analysis of their indi-
vidual features, since in the geodetic literature both methods are not clearly discrim-
inated. I addition, we expect from the comparison, an answer to the question;
if the solution of a large linear system in Method One, with a dimension equal -
to the number of observations, can be avoided as in Method Two. The consiaera-
tions will be restricted to the application of these models to quartities related to
the anomalous potential of the earth,

In a recent paper B. D, Tapley (1975) analyzes the two methods in re-
lation to the minimum variance principle.
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2. Basic Equations for the Two Models

A detailed exposition of the models and their least squares solution is
given in the above mentioned literature. We restrict ourseives on the presenta-
tion of the basic formulas; for Method Ons, equations (1) to (6); the corresponding
equations for Method Two are equations (7) to (12).

The model equation for Method Oge is
(1) L = 3:.:1 + 8' + n

L .....vector of observations, dim (n x 1),
X .+ ++.unknown parameters, dim (m x 1),

A.....coefficient matrix, dim (n x m), that relates the
observations £ to the parameters x,

8'.....random signal part of £, dim (n x 1), with E(8") =0
and, E(8's'") = Ce s, Wwhere E(.) means the statistical
expectation and is usually defined in physical geodesy to
be the integral over the earth, Cgg¢ is the covariance
matrix for the signal s',

n.....random signal, with E(n) = 0 and E(mn') = Cg,.
We also assume that E(s'n") = 0.

The desired signal is s with dimension (k x 1), The signal s does not appear
explicitly in equation' (1), it s linked to the model by a zero matrix 0. . We obtain

2) iy [l] [s'-l-n]
n n¥y B¥k 1
or with
-3-
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m= B and [yfn] -V,

t= Ax + B'v
where I...identity matrix.

The minimum length of the vector v will be derived from the minimization of
viQly
where

. Ced
(3) Q= :. Bois b

and C,,.....COvVariance vector of s
Ces' ... .Croscovariance between s and s',

It is assumed that E(sn’) = 0. From the least squares sclution we obtain
v = QB" (BQB")™} (2~ Ax)

and for the parameters x,

) x = (A" (BQE")" A4) A (BQB")" ¢,

where with equation (3)

-4-
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Thus, we obtain for the components of v
(%) 8 = Cus (Caw + Cu)” (L= AX)

and

(Cetd + Cp) (Cowr + Cad)™* (£ - AX)

(6) s'+n
L- Ax.

nn

The corresponding derivation for Method Two starts with the model

+ +
M $hte

= A 8
ns n

£ X
5% n

Here the desired signal s appears explicity in the model and is related to the
observation vector £ by the coefficiert matrix R with dim (n x k).

It has to be emphasized that even though we use in Model Two the same
notation for x, s, and n these quantities may be different from the corresponding
variables in Model Two. In fact, the purpose of the following considerations is to
clarify under what circumstances the corresponding variables x, s, and n are
identical.

A rearrangement of the random quantities 8 and n leads to

1

(8) 4= Ax + [‘x‘}'_g:].
a o

R ] 3
and with B* = [1] and v* = [n] we obtain a model of the same form as for
Method One

L = AX + B* y*,




We minimize v*' Q* ! v* with

©) e - g 2l

and obtain from the least squares solution

v = Q*B¥ (B*Q*B*')"' (L - Ax)
and

(10) x = (A (B*Q*B¥)" Ay A (B*Q*B*")7 L
where with equation (9)
e Cs R % & T
Q*B*' = and B*Q*B*' = RCyR + Cgpy.

Caa

Finally, the components of v* are

(11) 8 = CuR'(RCuR' + Coa)™ (£-AX)
and
(12) N = Cu(RCaWRY + Co” ' (L-Ax)

With equations (1) to (6) we draw the following conclusions for Model One:

~--The random signal 8' is of the same physical nature as the observations £.
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--The desired vector s can be of any dimension, k, and of any kind as long as
it is correlated with s', If there exists no correlation between 8 and s',
which means that there exists no dependence of s on the observations £,
the covariance C,, becomes zero and by this also the estimate of the sig-
nal s,

--Although solution equation (6) for 8' + n is trivial as it shows only the
basic model (1), it nevertheless reflects a basic characteristic of all
collocation methods, which is the reproduction of the measurement-~in
our case of the trendfree measurement L - Ax --- at the sample points.

~-If the elements of the covariance matrices are built from global covariance
expressions fulfilling Laplace's equation and following the 'law of propa-
gation" such as the covariance expressions derived by C. Tscherning and
R. Rapp (1974), the solution equation (5) will converge for limit n~=
towards the linear operator equations in physical geodesy, as proved by
H. Moritz (1975).

From equations (7) and (8) for Model Two we see that the coefficient matrix
R has to be given explicitly.




3. Comparison

A formal investigation of the equations for the two models, (1) to (6),
respectively (7) to (12), shows the following differences:

1. The least squares norm for v'v and v*Tv* is obtained with respect
to different variance covariance matrices Q, respectively Q*.

2. The difference in Q and Q* causes the different solution equations
for the trendfree observation s' +n, equation (6), and for the
observation noise, n, equation (12). An equivalent equation for
n can be deduced in Model One by splitting equation (6) into an
estimation equation for s' and one for n.

3. Due to the same reason, i.e. the difference in Q, also the solutions
for the parameters x, equations (4) and (10), and for the random
signal s, equations (5) and (11), are different although the formulas
show formally a similar structure.

The purpose of both models is the optimal estimation of the parameters x and
of the random signal s. Thus, the analysis will be concentrated on the solution
equations for x and s. We see that for,

13 Cu' = CuR'
and for
(14) Cé¢ = RCuR'

the solution equations. (4) and (10) and also (5) and (11) become identical, These
two expressions can be derived from one single equation,

(15) 8' = Rs




The same relation is immediately obtained comparing model equations (2) and (8).
* The derivation of equations (13) and (14) from equation (15) is obvious:

Equation (15) is multiplied on both sides with s and the statistical expectation
is taken. We obtain:

an E(s's') = RE(ss")

This is a discrete form of the well known WIENER-HOPF equation, In geodesy it
is the foundation of the "law of propagation of covariances®, Again the integral over
the earth takes the place of the statistical expectation. The expectations E(s's")
and E(ss') become the covariances C,, and C,,, and equation (17) becomes

equation (13).

In the same way, we take the expectation on the square of equation (15)
and obtain,
(18) E(s's¥) = RE(ss")R".

We replace the expectations by the corresponding covariance expressions and deduce
equation (14). The comparison shows that the estimates for the parameters x and
the random signal s become identical for both models, if only equation (15) is
valid. Therefore our further considerations will be concentrated on this equation.
We analyze if there exists a relation (15) with dimension k between two quantities
related to the anomalous potential of the earth. In order to provide an easy insight
into possible agreements and disagreements the discussion is split into filtering,
prediction and collocation,

3.1 Filtering

The purpose of least squares filtering is the separation of the noise n from
the signal s in the least squares sense. Thereby we assume that the covariance
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function of the signal and the covariance function of signal plus noise are given.
Since filtering is usually carried out in all observation points, we have k = n,
Because every signal s corresponds to a certain observation £ the coefficient
matrix will be the unit matrix, R = I. Thus, expression (15) becomes

8' = Is

or

(19) 8' = 8

and identical estimation equations (4) and (10), and also (5) and (11) are ef-
fective. For least squares filtering both models lead to identical results,.

3.2 Prediction

Least squares prediction means the optimal linear estimation of the ran-
com signal 8 from the observations £ at k points which are not identical with
the n observation points. In physical geodesy this definition has to be refined,
We assume that the observation and prediction points are on the same sphere, o,
or in spherical approximation on the earth's surface or on the geoid.

Following Krarup (1969, p. 16), we denote the last two terms in equation
(5) with &4,

(20) €n = (Cow + Co) ™ (L - AX), i=1,...0

The variable £, is only dependent on the n observation points P, but not on the
prediction points. The decision at what and at how many points predicton is car-
ried out depends on C,s. The covariance C,o is a function of the observation
points P; and of the finite or infinite number k of prediction points Q. The
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most general form for the covariance vector C.s i8 derived when each vector
element is an analytical function of the prediction point Q, Q€O0,

Co = CH(Q)‘
Then formula (5) becomes with (20)
(21) 8(Q) = Cn(Qén

where s(Q) is a continuous function of the predicted signal, defined on 0. This
case expresses the limit k—~= where s forms a complete set,

Quite different is the situation for Model Two: The corresponding expres-
sion for £y becomes for Method Two, (from (11) )

(22) Eriqy = (RCuR' + Co)™' (L= AX), J=1, ... ke
i=1, .o. 0.

In contrast to equation (20), the expression £,4q; is dependent on the observa-
tion and prediction points since it contains R and R relates by definition, see e-
quation (7),the observations to the signal. Therefore every choice of k makes
necessary a new computation of £pqq; .

But even if we accept this restriction for £, the prediction cammot be
solved with Model Two. For, there does not exist a matrix R transforming a
finite set of random signals s into a set of signals 8', both quantities related
to the anomalous potential of the earth, Only for the limit k -+~ a solution is
theoretically meaningful, For this limit the coefficient matrix, R, degenerates

towards Dirac's functions,

(23) R = O(¥r0)

e et S 0




where ¥»;q is the spherical distance between the observation point P, and any
prediction point Q. The basic relation (15) becomes for this limit

(24) lim shy = —;1;2[ 8(rsa) 8(Qdo.

R =0

We draw the conclusions:

The least squares prediction problem can be efficiently treated by Mndel
One for a finite as well as for an infinite number of random signals. With Model
Two the prediction problem caanot be treated. The limit relation for k-~ be-
tween s' and s is given in formula (24). Considering this expression, Model
One can be interpreted to be the limit of Model Two for k=,

3.3 Collocation

We distinguish between filtering, prediction, and collocation to provide
an easy insight into the special features of both models, although in the geodetic
literature the term least squares collocation usually includes filtering and pre-
diction. In least squares collocation gravity quantities at ¢ orin £ -- &
denotes the space outside ¢ -- are estimated from given observations which
may be at 0 or in £, Thereby, the collocation quantities s and the observa-
tions £ may be gravity quantities of a different nature such as the disturbing po-
tential, gravity anomalies, and their first or second derivatives. For an expo-
sition see H. Moritz (1973), T. Krarup (1969), and C. Tscherning (1975).

As in least squares prediction,” for the more general collocation method
no finite relation (156) can be derived, now considering, as mentioned above, s'
and s to be gravity quaatities of a different nature. Only for the extreme case
where s becomes a contimuous function oi 0, the relation (15) between 8' and s
is satisfied by one of the well known operator equations in physical geodesy.

Example: The derivation of gravity anomalies from altimeter data, as described
by R. Rapp (1974),

Assuming that the altimeter data are synonymous with geoid un-

-12-
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(25

with:

(26)

with:

dulations, the observation vector ¢ and the random signal
vector s' will consist of undulations, The random signal s
will be a continuous function s(Q) of the desired gravity ano-
malies. Then equation (15), i.e. the relation between the un-
dulations s' and the gravity anomalies s is Stokes' formula,

e - .;B:a. J"st(wm)-«a)do

Re « «+++.. mean radius of the earth
Gotooooto mean graVity over the O&rth
St(Y)..... Stokes' function for the spherical distance ¥.

This means, in order to fulfill the relation between s' and s
the finite k-dimensional vector 8 becomes a continuous func-
tion defined on ¢. Also in the spectral domain, in terms of a
spherical harmonic expansion, only the limit k- is valid.
The random signal 8 becomes the vector of the spherical har-
monic coefficients of the gravity anomaly expansion. We ob-
tain for equation (15),

shy = —gt- Z 1 2 B..(CO8 ) (85 COBMAQ + Sie SINMAQ)
n=2

a-1 ax=0

Pra(COBB) .. . . associated Legendre polynomial of degree n and order m.

The equivalence of both models can only be achieved for the limit k~=, where
the finite dimensional matrix, R, becomes one of the well known operator expressions.

-13~
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For any finite k the two models will give different estimates for the random
signal s and also for the parameters x.

Collocation based on Model One is carried out by inserting the continuous
function obtained from equation (21) by least squares prediction into an operator
equation that provides the desired random signal. Thereby, the continuous signal
obtained from equation (21) which is of the same physical nature as the observa-
tions is transformed into & finite or infinite number k of signals s.

Example: Let us again return to the problem of gravity anomaly recovery from
geoid undulations,

From equation (21) an intermediate signal &, i.e. a continuous
undulation function defined on ¢ is obtained. The covariance
function C,,(Q) is in this case the autocovariance function
CG'(Q) of the geoid undulations, In order to deduce gravity ano-
malies the signal ¥ is inserted into the boundary condition of

physical geodesy,

2 = .g 2% . 2G
(27) Bqy G ar R.iu

AL

o

where sq, is the vector of the gravity anomalies, j =1, ... k.
With equation (21) we find

-G _B%Q&n)— & 2G dﬂ'[‘(Q)‘ﬂ

Re

(28) By =
or

= (- 2@ . L oy atn.

-14-
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We see that in equation (28) the operator equation (27) is
only applied on the covariance CH(Q) leaving £, untouched.
In other words, the 'law of propagation of covariances' is
applied on CR'(Q). The expression in parenthesis becomes
the crosscovariance between the geoid undulations and

\ gravity anomalies, Ch-YQ). We derive from equation (28),

(29) 8q3 = Ciks Gém .

In Model One the only approximation is performed in the prediction step,
equation (21), where from n observations a function covering the entire spiere
o is estimated. The second step, where this function is inserted into an operator
equation, is carried out without any approximation,

In Model Two a coefficient matrix Rhas to be established. In all practical situations
the dimensionk will be choseri to be finite as shown for example in (Schwarz, 1974). In or-
der to solve a particular problem, an integral operator or its development into
an infinite Legendre polynomial connecting the signal with the observations has
to be approximated by a (n x k)-dimensional finite matrix R.

Example: For the application of Model Two to our problem, the recovery
of gravity anomalies from altimeter data, a finite approximation
to equations (25) and (26) has to be formed. In one case the
signal vector 8 will consist of gravity anomalies and the coeffi-
cient matrix R of n xk values of Stokes' function. In the other
case, the coefficients of a spherical harmonic expansion of the
gravity anomaly field are the elements of the vector s and R
consists of n xk spherical harmonics.

In contrast to Model One, for Model Two the operator equations have to be approxi-
mated by a finite system,

Summarizing the situation in least squares collocation, we see: The
equivalence between Model One and Model Two can only be achieved for the global

-15~
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limit k-=. Then the basic expression (15) becomes one of the operator equations
of physical geodesy. For any finite k collocation by Model One and by Model Two
will result in different estimates for s and for x. In Model One, the only approx-
imation is introduced for the derivation of a function of the type of the observed
quantities covering the entire sphere o, whereas in Model Two, one of the inte-
gral or spectral operators is approximated by a finite system,

-16-




Part II: Numerical Example

In this second part a numerical example is presented that allows us
to discuss some details in the comparison of the two least squares estimation
methods. The example treats the determination of spherical harmonic coeffi-
cients from geoid heights, The solution equations of the two methods are un-
fortunately very similar for this example because of the orthogonality proper-
ties of the spherical harmonics, as will be explained later in the paper. But
on the other hand this example has the advantage that it can be judged indepen-
dently of the chosen data, In addition, it is to a certain extent complementary
to (Schwarz, 1975) where for a similar problem regular least squares adjust-
ment using no apriori covariance information is compared with method (2).

We assume to have given 60 geoid heights free of errors in a glo-
bal spherical grid from latitude ¢ = 60° to ® = - 60° and from longitude A = 0°
to A = 330° in 30° intervals, The grid allows the resolution of spherical har-
monic coefficients up to about degree £ = 6 and order|m|= 5 . Although it
would theoretically be possible to determine from both methods, method (1)
as well as method (2), an infinite number of coefficients -- where the coef-
ficients with £ > 6 would not have any meaning besides that they would con-
tribute to reproduce the original geoid heights -- we solve only for the coef-
ficients up to £, = 4 (£ ... maximum degree) and jm|= 4 . That means
that we try to determine k = 21 coefficients (neglecting degree zero and one)
given n = 60 observations,

The spherical harmonic expansion of the vector, u, of 60 geoid
heights is,

+
(30) £=2 2 B, Yua(P) = L 2, i=1,..., 60;
Lk t=0 n=-l no ™1
with 8,004+ fully normalized spherical harmonic coefficients

of degree £ and order m of the geoid height

8 ...... vector of these coefficients (dim, =- 1)

-17-
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Yae.e.. fully normalized spherical harmonics
of degree £ and order m

r eeseee Mmatrix to the hamonlcs (dim. n‘.)

and with
< o rnyal (2=000(22+1)(L-m)1 3 takey
Yo (Py = -1y | L20ACLIC- DL by, oinry e
where 80g.+... Kronecker symbol

Py, (8iny). associated Legendre functions,

For later needs the spherical harmonic development is splitted into a k-dimen-
tional part one and a (» - k + 1) -dimensional part two,

(31) u=JIa=R + B

- - - - -

"1 nmomn 28k k1l n(o=k+1) (0~x+1) 1
Method (1):

Based on the given 60 geoid heights an approximation to the "true"
global geoid height function u(Q) is derived from

(32) 8Q = G (Qs Py) Cu(Py Py u(Py

where C,, is the autocovariance matrix of the geoid heights. The estimates
for the geoid height spherical harmonic coefficients are obtained by inserting
expression (32) into an integral formula,

-18-
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By using for the covariance function the expression

Cul(Q, P) = i dg afse Py (cO8 Yor)

£=o

2 ¢
where dy = -gr (T_‘Ll—), .+« geoid height degree variance

2
8 =(—§‘-—) eeseess Square ratio of the mean earth
Rap radius R, to a Bjerhammar
sphere with Ray < Re

A
we obtain for ag, ,

A 2 - =
(33) age = (2::1 8" g (P)) Cuu (PuP)™ W (R)
and denoting
d L4y =
@ G = (i ¢ Tutm)

we find the estimation formula for the geoid height coefficients

i@




.Y
(35) 3y, Cau S U
11 12 ananl

Because of the global character of the approximation G(Q) any geoid height
coefficient may be estimated by equation (35) independently from one another.
Since we solve only for the lowest k = 21 coefficients (zero and first degree
excluded) we use the notation of equation (31) and rewrite equation (35) to

(36) 8 = Cu Co u
k1l l—l l-'n al
and
A i -
(37) 8 = Culuw B & +Cuwlu 8§ %
k1 Ka an nk x1 kn an a{®kt1) (o~et+1)1

Denoting
A =CuCu R
and
A = Culu §
we obtain
(38) él = ﬁg; + é, a,

Matrix A, relates the unknown low frequency spherical harmonic coefficients of
the given geoid heights to the unknown spherical harmonic coefficients to be esti-
mated. In an ideal situation 4_, is expected to be the identity matrix L Matrix
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relates the coefficients with £ > £, to the coefficients to be estimated.

1y should be the zero matrix O. Ina practical situation like ours
where a finite but regular grid with observations defines a smallest resolv-
able wavelength (or Nyquist frequency) the matrix A, # O generates the
alaising effect from the coefficients with £ > fo,

Method (2)

Since we solve in our case only for k = 21 spherical harmonic gecid
height coefficients, method (2) is based on a finite approximation to the in-
finite series expansion of equation (30). We express the geoid heights by a
finite series of spherical harmonics accepting a certain model error, ¢,

(39) u = R + €
=
al 2k k1 2l

The solution equation for the unknown parameter vector a, is, using equation
(11)

(40) 8 =Cu R(R Cu R +Cw’u
X1 XKk ko ak kk Em sn 21

Here C,, is the autocovariance matrix of the spherical harmonic coefficients.
Because of the orthogonality of the spherical harmonics it becomes a diagonal

t+1 d‘
+

matrix with elements s = and it holds the relationship

(41) glll - g” g’ .
ka kk kn

21~




Relation (41) based on the orthogonality properties of spherical harmonics and
corresponding to equation (13) of part bne'is the reason that for this specific
example, i,e. the determination of spherical harmonic coefficients from a gravi-
ty function, the estimation equations of method (1) and method (2) become very
similar.

In addition, the matrix product R G R R’ is the autocovariance matrix
for geoid height including wavelengths up to Lo We may write

(42) ga.w - E Caa 5
and
b
(43) gnu - __@.uu + g’f,oul,w

From equations (42) and (43) follows that relation (14) of part‘one'does not
hold for our example which means that the corresponding estimation equations
for both methods are not identical.

We obtain for equation (40) using (41) and (42)

(44) & = Cu (gf‘,’... + Cu)'u
and with (31)
() & = Gu (E:?w + Cw) R &+ Cu (g.,.. + Cu) '8 8.
Denoting
B = Gu Qo+ Cu B,

e O P ——————e

B T S




———

o L A

and

B, = gn (g:?\m + gau )-1
the corresponding equation to (38) becomes

(46) a =

o

3 + By

where again in an ideal situation B, should be the identity matrix and B, the
zero matrix.

Although the given geoid heights are assumed to be free of errors
the matrix Co is included in the estimation equation of method (2). It may be
used (i) to model partially the model error,¢, in equation (39) and (ii) to sta-
bilize the numerical solution of equations (44) to (46). In order to see the in-
fluence of the noise matrix C,, on the estimates two different models were used:
model 24 ("'£" for low noise level) with C,, = 0. 011 and model 2h ("h" for high
noise level) with Con = o’ I with

o‘a=i s"ud‘

’:slo’l

Model 2h is corresponding with € to be interpreted as white noise with variance
equal to the variance of the short wavelengths(£ > £,) not contained in CeR,.

Numerical Results and Their Interpretation

First, the matrices A, for method (1) and 31 for method (2) have
been computed. They depend on the spherical harmonic coefficients to be esti-
mated and on the location of the "observations' but not on their magnitude. There-
fore they give an objective picture of the transformation from &, to 4,. For the
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described data grid the results for matrix A, and for matrix B, for version 21
(low noise) and 2h (high noise) are given?n tables one to three.

The result for matrix of model 24 is within 1% a perfect identity
matrix as shown in Table 2. Neglecting the influence of the second right hand
term of equation (46) this means that method (2) would produce perfect coeffi-
cient estimates using model 2¢. Matrix B, (table three) using model 2h shows
some small off-diagional terms and the dlagonal terms slightly damped with
increasing degree and order.

In order to understand the effect of A; and B, as well as of the not
ideal matrix A, or B, on the estimated coefficients we generated geoid height
spherical harmonic coefficients from the GEM 8 set of potential coefficients
(Wagner et als., 1976) which is c?mplete up to degree 25 with some additional
terms, and estimated the vector &, up to £, = 4 and|m|= 4 using equations
(38) and (46). We split the estimated coefficients into three parts:

(1) The part produced by the diagonal terms of ﬁ and B,
(all of them should be one in an ideal situation): The
results are listed for all three models in column 2 of
tables four to six.

Because of the perfect structure of B, for model 2¢
the estimates in column 2 are equal to the input coef-
ficients. For method (1) and for model 2h the coef-
ficients are reproduced with small distortions because
of the damped terms on the diagonal of A, and B,
respectively,

(2) The part produced by the off-diagonal terms of A and
B, (all of them should be zero): The results are e given
in column 3 of tables four to six.

Also in column 3 there are only very small distortions
always less than 1/1000 of the corresponding coefficient
for model 2¢. The distrubing contribution caused by the
off-diagonal terms of A1 and B, is however significant
for method (1) and for model Zh,
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(3) The part produced by the matrices Az and Bg
which is the alaising effect of the coemclenﬁ with
L> 4, on g, (all elements should be zero in an ideal
situation). The results are given in column 4 of
tables four to six,

The dimension of the matrices A, and B, is only
n+(673-k+1) instead of n+ (o -k +1). The number
673 is thereby the full number of potential coeffi-

cients up to £ =25 and jm|= 25 excluding degree
zero and one.

We see in column 4 that the alaising effect for me-
thod (2) model 2£ is higher as compared to method
(1) and also to method (2) model 2h. But since the
magnitude of the input coefficients decreases rapidly
with increasing degree, e.g. expressed by Kaula's
rule of thumb, the disturbing influence on the esti-
mated coefficients is comparably small.

Column 5 of the tables four to six contains the sum of all three parts which is the
vector of the estimated coefficients, ﬁ., and in column 6 the vector, a,, of the
input coefficients is listed. The 'best" estimates for the spherical harmonic
coefficients in the sense that the estimated coefficients are closest to the input

coefficients is achieved by method (2) with the low noise model 2¢. The reasons
for this fact shall be more closely analyzed in the sequel.

For convenience we denote

g};’ e “3.
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from from off- from estimate
diagonal of A, | diagonal of A, B sum 2,3, 4 Ryt
2 3 4 5 6
(4] 0.06517 0.16€31 0.07428 0.,30776 0.,06713
3 «0.00041 -0.0£011 -0,06661 -0.16716 -0,00042
1 0.00180 -0.07056 0.03897 -0,02979 0.,00183
2 15.26656 0.0425% 0.01277 15.32188 15.54655
2 -8.75019 0.06158 -0.02123 -8.689084 ~8.91066
0 5.79696 0.00009 -0.01380 5.78325 6.11637
b 12.70010 =0.00003 0.09497 12. 79504 12.94395
1 1.56016 0.00005 ~0.05432 1. 50589 1.59258
2 5.6072% -0.00007 -0.02939 5.57779 $.73012
2 =-3.69300 -0.00003 0.05178 -3.84126 ~3.97831
3 4£.,64619 0.00001 0.00032 4.,466652 4.,57315
3 8.79654 0.00001 -0.01617 8.78038 9.06774
(] =1.10642 -0.00139 -0.00610 -1.11391 ~1.59498
1 =3.10289 0.00004 -0.07115 =3.18060 ~3.,42616
1 -2.73573 0.00003 0.04540 =-2.69031 ~3.02078
2 2.00418 0.05235 0.04531 2.10184 2.21423
2 3.84163 | -0.02995 -0.07760 3.73408 4024428
3 5.69139 -0.00004 0.00032 S.69168 6.,28301
3 =1.13613 0.00004 0.04370 -1.09238 -1.256423
4 =1 .09034 -0.00004& -0 .00500 =1.09539 ~1.264628
4 1.70339 0.0 -0.00890 1.69448 1.94700
Table 4. Estimated Geoid Height Spherical Harmonic Coefficients

: for Method (1).
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from . from off- from estimate
diagonal of A, | diagonalof A,| B, | mumof2,3,64 -
) 3 4 5 8
0.06713 0.00062 0.13652 0.20427 0.06713
=0.00042 0.00046 -0.02631 -0.02627 -0.00042
0.00183 0.00048 0.07752 0.07982 0.00183
15.54658 -0.00037 0.05181 15.59799 15.54655
-8.91066 -0.00069 0.01823 | -8.89312 =8.91066
6.11637 0.00007 | -0.03422 6.08221 6.11637
12.9639% -0.00003 0.14708 13.11100 12.96395
1.59258 0.00006 | -0.02259 1.57003 1.59258
5.73012 -0.00007 -0.00068 572937 5.73012
-3.97831 -0.00004 0.10914 | -3.86921 -3.97831
4$,57318% 0 .00001 0.03952 4.,61268 4.,57315
9.04774 0.00001 0.01678 9.06453 9.04774
-1.59498 -0.00015 0.06859 | =-1.526%54 | -1.59498
~3.62616 0.00005 “0.06637 | =3.47249 | -3.42616
-3.,0207% 0.00002 0.08910 -2.93163 -3,02078
2.21423 | ~0.00447 0.09618 2.3059% 2.21423
4.26428 0.00262 -0.05863 4418827 4.24428
6.2€301 -0.00005 0.03952 6.32248 6.28301
=1.25623 0.00005 0.09197 -1.16222 =1.25423
-1.26628 -0.00005 0,03340 -1.21293 -1.26628
1.94700 0.0 0.02892 1.97592 1.94700

Table 5. Estimated Geoid Height Spherical Harmonic Coefficlents

for Method (2) Model 24,




from from off- from estimate input
diagonal of A, | diagonal of As B sumof 2,3,& 4
2 3 4 5 6
0.06453 0.04917 0.09261 0. 20631 0.06713
«0.00040 -0.14880 =0.06678 =0.21599 -0.00042
0.0017¢6 =0.13113 Q.03895 =0.,09042 0.00183
14.79840 0.05210 0.01329 164.86379 15.54655
-8.4818% 0.09988 -0.02234 -8.40431 -8.91066
5.72954 0.00006 -0.06883 5.66078 6.11637
12.41922 -0.00003 0.10329 12.52240 12.96395
1.52566 0.00004 -0.0592% 1.466645 1.59258
5.42104 -0.00007 -0.03778 S.38319 $.73012
=3,76372 -0.00003 0.06611 -3.69766 -3,97831
4.28032 0.00001 0,00025 4.28058 4.%7315
8.46838 0.00001 -0.02103 8.44736 9.0477¢
-1.12958 =0.00049 0.02028 =1.10979 =1.59498
-2.92038 0.00004 -0.07350 : -2.99384 =3.42816
=2.57481 0.00003 0,04282 -2.53196 -3,02075
1.83262 0.06530 0.04720 1.94512 2.21623
3.51279 -0.0373¢8 -0.08108 3.39433 4.2464628
5.05640 =0 .00004 0.0002% 5.05461 6.28301
=1.00897 0.00004 0.04244 =0.96649 =1.25423
-0.97537 =0.00004 -0,00654 =0.9799% -1.26628
1.52378 0.0 -0.00804 1. 51574 1.94700

" Table 6. Estimated Geoid Height Spherical Harmonic Coefficients
for Method (2) Model 2h,
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where "A' indicates that the elements of AC are usually smaller than these of
C, especially when the maximum degree £, is high., Under the usual conditions
of convergency we expand Cq; = (§ + AQ" into a power series,

“n e E-Tacl ATt

Denoting the geoid height part generated by the spherical harmonic expansion
up to 4, with u, and the residual geoid height with ua, equation (31) becomes

(48) L1=R5 +

L]

. ol W

Equation (37) becomes with (47) and (48)

-1

1l

@ &gl Gl B MEAC Ty - GuTACT s e

or

() & =Cul Bo+ouT 85 CuT AC TR & - CuTACT S H ¢

Multiplying equation (50) on both sides witl'R and using equations (41) and (42)
we obtain .

(51) lsté;=§.a_1+

1]

-1 =1
iﬂ-gg EQ-ACC §5+...'

With this series expansion it is possible to discuss equations (49) to (51)
term by term,

case 1: Truncation of series (49) after the first right hand




term: Then the equation represents an "'exact' collocation
solution in a k-dimensional space, i.e. in a situation where
the anomalous potential of the earth can be represented by
a series of spherical harmonics up to degree £, with k
terms. Equation (51) shows that truncation after tlkle first
right hand term results in perfect reproduction of a, .

case 2: Truncation of series (49) to (51) after the first two
terms: The first two right hand terms of (50) are identical
to these of equation (46) for method (2) if Cu = O which
is approximately the case for model 24,

That means that the estimation equations for model 24
with only the first right hand term reflect the situation des-
cribed in case 1, as shown in table 2 where

wmE'R-B

is a perfect identity matrix. The second term expresses
the alaising effect. As is obvious from equations (50) and
(51) the magnitude of the elements of a, directly influences
the disturbing alaising effect. Therefore since the magni-
tude of the coefficients of quantities related to the earth's
anomalous potential decreases in the mean with increasing
frequency, the alaisiug effect is comparably small as long
as low harmonic coefficients are estimated.

case 3: The complete formulas (49) to (51) represent the
collocation solution foi method (1). The first and higher
order terms in (49) containing y, and in (50) containing

3, cause the damping of the diagonal terms and the appear-
ance of off-diagonal terms in matrix A, (table 1). On the
other hand, the first and higher order terms containing u,
and ag respectively reduce significantly the alaising effect
as can be seen by comparing columns 4 of tables 4 and 5.

The matrix product AC C™* which occurs in all first and
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higher order terms of equation (49) to (51) would become
zero if instead of a finite point grid a global geoid height
function would be given, for then % and §"' would be
orthogonal. For this case the solutions for method (1) and
method (2) would become identical as already shown in
part one. For all finite point grids this orthogonality rela-
tionship is lost and causes the differences in the solutions
for both methods.

Using method (1) the approximation to a gravity function is carried out in an
infinite dimensional Hilbert space with kernel funciion C represented by an
infinite dimensional Legendre series. Therefore it would be advisable to
solve for all coefficients up to infinity. Only then a perfect reproduction of
the given geoid height from the estimated coefficients is ensured.

Finally, we see that method (2) using model 2h yields almost the
same results as method (1). Small diffierences may be explained by the fact that
for method (1) Cuu is used which contains all wavelength up to degree and or-
der infinity, whereas for method (2) model 2h in equation (43) the second
right had term C7.+1,m is approximated by

od
. i a_ ‘+1
AC = C, = 0] witha—z s d,

Because of the finite point grid the coefficients with £ > £, cannot
be resolved. That means that the low wavelength part of the geoid heights
basically behaves like white noise or in other words AC becomes approxi-
mately Cone o

From comuumn 5 of tables 4 to 5 we see that all three models pro-
duce a reasonable recovery of the input geoid height spherical harmonic coef-
ficients. Although method (2) with model 2% produces the most satisfactory
results the underlying model can hardly be justified since the low wavelengths
components of the given geoid heights are not properly modeled.
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part III: Conclusions

The two least squares models, described by the equtions (1), (2), (7),
and (8) can be distinguished by their different variance-covariance matrices
Q and Q*, compare equations (3) and (9). The differences in Q and Q*
lead to different formulas for the estimation of the parameters x, equations
(4 and (10), and for the random signal s, equations (5) and (11). Only if
the relation

(15) s' = Rs

between s and s' is valid, the estimation equations for x and s become
identical. In physical geodesy where s' and s are quantities related to the
earth anomalous potential, equation (15) is only fulfilled by one of the well
known operator equations,such as the Poisson, Stokes, or Vening-Meinesz
equations. In the frequency domain, where R expresses a spherical har-
monic development s becomes the infinite dimensional vector of spherical
harmonic coefficients of this development. In the parameter domain, equa-
tion (15) will be one of the integral equations of physical geodesy and

we have to assume s to be given continuously at the entire sphere, o.

For any finite dimension of the random signal vector s we obtain dif-
ferent results for x and s from Model One as compared to Model Two. The
only approximation necessary to solve the finite problem is performed in Model
One for the derivation of a continuous function interpolated from the observa-~
tions, After inserting this interpolated function into the operator equation
suited for the derivation of the desired gravity quantity, the operator equation
is solved without any approximation, whereas for Model Two the operator
equation itself is approximated by a finite matrix system. Within this respect,
Model One is superior to Model Two, The advantage of Model Two lies in the
fact, that -- as already mentioned in the introduction -- the solution of a large
linear system with dimension equal to the number of observations can be re-
placed by the solution of a linear system with dimension equal to the number
of unknowns, since R appears explicitly in the solution equations (10), (11)
and allows the application of certain matrix manipulations, compare for example
(U. Uotila, unpublished paper, (1973) or P. B. Liebelt (1967) pp.27).

«$f=




Finally, any problem which can be expressed by Model Two, i.e. for
which an explicit form of the coefficient matrix R can be established, can also
be solved by Model One. This is obvious since with C, --assumed to be given
in both models--and R the covariances C,s and C,!' necessary in Model One
can be derived from equations (13) and (14). The estimated parameter vector
x and random signal vector s will be identical.

The estimated value of a certain gravity parameter depends not only
on the special features of the two models but to a high extent on the characteris-
tics of the gravity field as well. As an example low degree and order (L= |m|=
4) spherical harmonic coefficients of the geoid height have been estimated from
60 geoid heights which have been generated from the GEM-8 set of potential
coefficients (£ = |m| = 25) and were given in a global regular grid over the
sphere. For this problem the estimation equations become almost identical
for both methods with the only difference that for Method One the covariances
between the observations contain all wavelengths inherent also in the spectrum
of the observations whereas these of Method Two contain only the wavelength
range of the coefficients to be estimated. Because of this a considerable a-
laising effect would be expected for Method Two. But the results show that
because of the rapid decrease of the degree variances of geoid heights with in-
creasing degree the disturbing effect of the shorter wavelengths (4 <£<25) is
almost negligible., The best recovery of the harmonic coefficients was achieved
using Model Two and assuming that the given geoid heights contain no wavelengths
with £>4, Method Two modeling the wavelengths between £ =5 and £ =25 as
white noise yielded about the same results as Method One.
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